Lompat ke konten Lompat ke sidebar Lompat ke footer

Widget HTML #1

Phototransistor

Phototransistor merupakan transistor yang dirancang untuk menangkap cahaya dan dirakit dalam sebuah kemasan transparan. Kepekaan phototransistor jauh lebih baik daripada photodiode karena phototransistor telah memiliki penguat terintegrasi. Cahaya yang diterima menimbulkan arus pada daerah basis dari phototransistor, dan menghasilkan penguatan arus mulai dari seratus hingga beberapa ribu kali.

Phototransitor menjadi populer untuk aplikasi yang hanya memiliki power optikal beberapa ratus nanowatt karena kemudahan pemakaian, murah dan kompatibel dengan level tegangan TTL. Meskipun begitu, phototransistor memiliki kekurangan dibandingkan dengan photodiode. Bandwidth frekuensi dan linearitasnya relatif terbatas serta respon spektrumnya berada antara 350 nm hingga 1100 nm. Selain itu, banyak variasi sensitifitas untuk masingmasing komponen dan sedikit pilihan kemasan standar.

KARAKTERISTIK PHOTOTRANSISTOR 

Rangkaian ekuivalen untuk phototransistor (gambar 1) adalah terdiri dari sebuah photodiode yang outputnya diumpankan ke basis sebuah trasnsistor sinyal kecil. Berdasarkan model tersebut maka wajar jika phototransistor menunjukkan karakteristik diode maupun transistor. Karekteristik arus dan tegangan sebuah phototransistor mirip seperti transistor NPN, dengan pengecualian bahwa cahaya masuk menggantikan arus basis.
Rangkaian ekuivalen phototransistor
Rangkaian Phothotransistor
Struktur phototransistor (gambar 2) sangat mirip dengan photodiode. Pada kenyataannya, junction kolektor-basis sebuah phototransistor dapat dipakai seperti photodiode dengan hasil yang cukup memuaskan. Perbedaan utama strukturnya adalah bahwa phototransistor memiliki dua junction sedangkan photodiode hanya memiliki sebuah junction saja.

Chip phototransistor
Struktur Phototransistor

RESPON SPEKTRUM 

Output sebuah phototransistor tergantung pada panjang gelombang dari cahaya yang masuk. Phototransistor bereaksi terhadap cahaya dengan range spektrum panjang gelombang yang lebar mulai dari spektrum mendekati ultraviolet, melewati spektrum cahaya tampak hingga mendekati spektrum inframerah. Tanpa filter optik, respon puncak berada disekitar spektrum inframerah (sekitar 840 nm). Respon puncak ini berada pada nilai panjang gelombang yang lebih pendek daripada photodiode tipikal. Hal tersebut karena junction difusi sebuah phototransistor terbentuk pada epitaksial dan bukan pada wafer silikon.

Phototransistor akan bereaksi pada lampu fluorescent ataupun sumber cahaya umum namun menunjukkan efisiensi kopel cahaya yang lebih baik ketika dipasangkan dengan LED inframerah. Standar LED inframerah adalah GaAs (940 nm) dan GaAlAs (880 nm).

SENSITIFITAS 

Untuk level iluminasi sumber cahaya yang diberikan, output sebuah phototransistor ditentukan oleh area yang terbuka pada junction kolektor-basis dan arus penguatan DC transistor. Junction kolektor-basis phototransistor berfungsi sebagai photodiode yang menghasilkan arus photon yang diumpan pada basis bagian transistor. Kondisi tersebut sama halnya seperti photodiode yang memperbesar region basis dan melipatgandakan jumlah arus photon yang dihasilkan. Arus photon ini (Ip) dikuatkan oleh penguat arus DC transistor.

Sesuai karakteristik transistor, nilai hFE tidaklah konstan melainkan berubah-ubah tergantung arus basis, tegangan bias dan temperatur. Pada level cahaya yang rendah, penguatan mulai dengan nilai yang kecil kemudian naik sesuai dengan peningkatan intensitas cahaya hingga puncak penguatan dicapai. Setelah mencapai nilai puncak, peningkatan intensitas cahaya akan diikuti dengan turunnya penguatan.

LINIERITAS 

Tidak seperti photodiode yang outputnya linear terhadap cahaya yang masuk mencapai iluminasi cahaya 7 sampai 9 dekade, Arus kolektor (Ic) sebuah phototransistor adalah linear untuk iluminasi 3 sampai 4 dekade. Alasan utama atas keterbatasan ini adalah karena Penguatan DC (hFE) phototransistor fungsi perubahan arus kolektor (Ic) yang berubah tergantung oleh arus basis yang berupa arus cahaya yang masuk.

TEGANGAN SATURASI KOLEKTOR-EMITOR 

Saturasi adalah kondisi ketika kedua junction emitor-basis dan kolektor basis sebuah phototransistor menjadi terbias maju. Dari sudut pandang praktis tegangan saturasi, VCE (SAT), adalah parameter yang menunjukkan betapa dekatnya photodetektor mendekati kondisi switch tertutup karena VCE (SAT) adalah tegangan jatuh pada detektor ketika kondisinya ON.

DARK CURRENT (ID) 

Ketika phototransistor ditempatkan dalam gelap dan tegangan diberikan pada kolektor ke emitor, sejumlah arus tertentu akan mengalir. Arus ini disebut dark current (ID). Arus ini terdiri dari arus bocor junction basis emitor yang dikalikan dengan penguatan arus DC (gain) transistor. Keberadaan arus ini mencegah phototransistor menjadi dianggap benar-benar “OFF”, atau menjadi saklar ideal yang terbuka. Dark current ditentukan sebagai arus kolektor yang diijinkan mengalir pada tegangan uji kolektor-emitor. Dark current merupakan sebuah fungsi nilai tegangan kolektor-emitor dan suhu lingkungan.

TEGANGAN BREAKDOWN (VBR) 

Phototransistor harus dibias dengan benar agar dapat bekerja dengan baik. Tegangan yang diberikan pada phototransistor harus diperhatikan agar tidak melebihi tegangan breakdown kolektor-emitor (VBRCEO) maupun tegangan breakdown emitor-kolektor (VBRECO). Melebihi tegangan ini akan mengakibatkan kerusakan pada phototransistor. Nilai tipikal untuk VBRCEO berkisar mulai dari 20 V hingga 50 V dan nilai tipikal untuk berkisar antara 4 V hingga 6 V.

KECEPATAN RESPON 

Kecepatan respon sebuah phototransistor didominasi hampir secara keseluruhan oleh kapasitansi juncion kolektor-basis dan nilai resistor beban. Dominasi ini berkaitan dengan Efek Miller yang mengalikan nilai time constant RC dengan penguatan arus phototransistor. Aturan tersebut berlaku untuk alat yang mempunyai area aktif yang sama, semakin tinggi penguatan oleh phototransistor, makin rendah kecepatan responnya.

Sebuah phototransistor memerlukan sejumlah waktu tertentu untuk bereaksi terhadap perubahan intensitas cahaya yang tiba-tiba. Waktu respon ini biasanya dinyatakan dengan nilai rise time (tR) dan fall time (tF) (tR adalah waktu yang dibutuhkan output untuk naik dari 10% menjadi 90% pada nilai on-state-nya, dan tF adalah waktu yang dibutuhkan output untuk turun dari 90% menjadi 10% pada nilai onstate- nya).
PERHATIAN
Jika ingin mengcopy-paste referensi dari KajianPustaka.com, mohon untuk menambahkan sumber rujukan di daftar pustaka dengan format berikut:
Riadi, Muchlisin. (). Phototransistor. Diakses pada , dari https://www.kajianpustaka.com/2012/10/phototransistor.html